ESTUDIO

Estudio del sistema de generación de energía eléctrica para la isla de Lanzarote para determinar la máxima penetración de energías renovables y el mínimo coste de generación (FASES I,II y III). RESUMEN EJECUTIVO.

PETICIONARIO

CONSORCIO DEL AGUA DE LANZAROTE

AUTORES

Ingeniería, Investigación e Innovación para el Desarrollo Sostenible, S.L.

MARZO 2017

BLOQUE DE CONTENIDOS

1	II	NTRODUCCIÓN	_ 1
2	0	BJETIVO DEL ESTUDIO	_ 2
3	SI	TUACIÓN ACTUAL DEL SISTEMA ENERGÍA, AGUA Y MOVILIDAD EN LANZAROTE	_ 3
4	E	VALUACIÓN DE ALTERNATIVAS AL ACTUAL MODELO ENERGÉTICO	_ 5
	4.1	ALTERNATIVAS ANALIZADAS	_ 6
5	R	ESULTADOS OBTENIDOS	_ 8
	5.1	RESULTADOS OBTENIDOS EN EL AÑO 2013	_ 8
	5.2	RESULTADOS OBTENIDOS EN EL AÑO 2020	_ 9
	5.3	RESULTADOS OBTENIDOS EN EL AÑO 2038	11
	5.3		
	5.3	.2 Sistema de Generación de energía eléctrica óptimo con almacenamiento energético	15
	5.3	.3 Influencia de una gestión eficiente de la producción de agua desalada en el sistema	de
gene	eració	on de energía eléctrica	
	5.3		_
eléc	trica		
	5.3		
gest	ión e	ficiente de la producción de agua y recarga de vehículos eléctricos	20
	5.3	.6 Influencia de la variación del precio del combustible en el sistema de generación	de
enei	rgía e	léctrica	21
6	C	ONCLUSIONES	23

1 INTRODUCCIÓN

A continuación se presenta un resumen del "Estudio del sistema de generación de energía eléctrica para la isla de Lanzarote para determinar la máxima penetración de energías renovables y mínimo coste de generación" encargado por el Consorcio del Agua de Lanzarote, que contiene los resultados de las FASES I,II y III del mismo:

- Análisis de la situación actual del sistema de generación eléctrico, del agua y del transporte terrestre en la isla de Lanzarote y previsión de su evolución. (Fase I)
- Simulación del sistema de generación eléctrico actual. (Fase I)
- Diseño del modelo energético más probable en un futuro próximo (año 2020). (Fase II)
- Diseño del modelo energético óptimo desde el punto de vista técnico, económico y medioambiental (año 2038). (Fase III)

2 OBJETIVO DEL ESTUDIO

El presente estudio tiene como objetivo principal diseñar y evaluar un nuevo modelo energético en la isla de Lanzarote que permita el máximo aprovechamiento de los recursos renovables que posee para satisfacer las necesidades energéticas de uso interno de la población (energía eléctrica, agua y transporte interno), con la finalidad de reducir sustancialmente los costes de electricidad, producción de agua y de movilidad, disminuir el consumo de combustibles fósiles y las emisiones gases de efecto invernadero e incrementar el nivel de autosuficiencia energética.

Los objetivos específicos que se cubren con este estudio son los siguientes:

- 1. Definir el modelo energético más probable a corto plazo en función de la previsión de la evolución de la demanda de energía eléctrica y la incorporación de nuevos parques eólicos, instalaciones fotovoltaicas y equipos de generación térmicos.
- 2. Definir el modelo energético óptimo (best-case escenario) sin almacenamiento energético en un caso, y con almacenamiento de energía y de agua en otro. En estos modelos energéticos se definirá:
 - La ubicación de nuevas plataformas eólico-solares y/o centrales hidroeléctricas.
 - Las características técnicas, económicas y medioambientales del sistema de generación de energía eléctrica, y en su caso, del sistema de almacenamiento energético y del sistema de transporte terrestre mediante vehículos eléctricos.
- 3. Definir los modelos energéticos en varias etapas de transición del sistema actual al sistema óptimo. En estas etapas se definirá:
 - La ubicación de nuevas plataformas eólico-solares y/o centrales hidroeléctricas.
 - Las características técnicas, económicas y medioambientales del sistema de generación de energía eléctrica, y en su caso, del sistema de almacenamiento energético y del sistema de transporte terrestre mediante vehículos eléctricos.

3 SITUACIÓN ACTUAL DEL SISTEMA ENERGÍA, AGUA Y MOVILIDAD EN LANZAROTE

El modelo energético actual de la isla de Lanzarote, al igual que el de Canarias, se sustenta sobre el consumo de productos derivados del petróleo para cubrir prácticamente todas las necesidades energéticas de la isla, disponiendo de un nivel de autosuficiencia energética muy bajo y una penetración de energías renovables insignificante.

Si analizamos el modelo energético actual, tomando como referencia el año 2013, observamos que es claramente insostenible, con elevada dependencia de recursos energéticos externos que generan una gran contaminación y elevados costes de generación:

- Para atender la demanda de energía eléctrica se consumieron 161.050 toneladas equivalentes de petróleo (64% de la demanda interna de combustible), con un coste de generación aproximado de 19 c€/kWh. La baja penetración de energías renovables existente (eólica y solar fotovoltaica) sólo permitió que se ahorraran 7.540 tep y que se evitara verter a la atmósfera 25.845 t de CO₂ equivalente. El nivel de eficiencia de la central térmica fue del 40 % y las pérdidas en la red de transporte fueron del 5,75 %.
- Prácticamente toda el agua que se consumió en la isla provino de plantas desaladoras, demandando aproximadamente el 14% de la energía eléctrica total producida. Por tanto para producir el agua demandada en el año 2013, 24 hm³, se consumieron aproximadamente 21.560 toneladas equivalentes de petróleo, con un coste asociado exclusivamente al consumo de combustible de 50 c€/m3. Las pérdidas en la red de transporte de agua fueron del 50,8%.
- Para satisfacer las necesidades de transporte interior, se consumieron 78.030 toneladas equivalentes de petróleo (30% de la demanda interna de combustible), con un coste medio de movilidad de 8 € cada 100 km.
- Para satisfacer el resto de necesidades (generación de calor y otras actividades industriales), se consumieron 15.820 toneladas equivalentes de petróleo y se ahorraron 825 toneladas (un 5%) por el empleo de las energías renovables (solar térmica).
- El nivel de autosuficiencia energética para uso interno en Lanzarote fue del 3,2%, encontrándose por debajo de la media de Canarias, que se sitúa en el 4,3%.

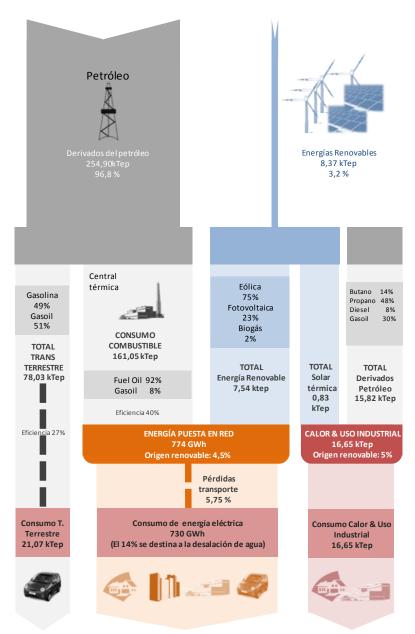


Figura 3.1. Balance Energético de uso interno de Lanzarote Elaboración propia. Fuente: Anuario Energético de Canarias. GOBCAN

4 EVALUACIÓN DE ALTERNATIVAS AL ACTUAL MODELO ENERGÉTICO

Ante esta situación energética insostenible, el estudio se centra en analizar diferentes alternativas de sistemas de generación de energía eléctrica enfocadas a conseguir una alta penetración de renovables proponiendo cambios en el modelo energético actual de la isla, a la vez que evalúa su impacto económico y ambiental. Las premisas para generar el cambio se basan en introducir:

- Un sistema de generación de energía eléctrica de alta eficiencia, con una alta penetración de energías renovables (nuevos parques eólicos, instalaciones solares fotovoltaicas y otras fuentes de origen renovable).
- Un sistema de producción de agua de alta eficiencia, con depósitos y/o embalses que permitan poder gestionar la demanda de cara a producir en las horas de menor coste de generación de energía eléctrica y aprovechar posibles excedentes de energías renovables. A su vez también contempla una red de transporte con pérdidas inferiores al 20%.
- Un parque móvil de vehículos eléctricos, que irá sustituyendo al actual parque móvil de vehículos térmicos, en el que se permita gestionar la recarga de las baterías para cargar en las horas de menor coste de generación de energía eléctrica y aprovechar posibles excedentes de energías renovables.
- Sistemas de almacenamiento energético que permitan incrementar la penetración de energías renovables en el sistema (baterías o centrales hidroeléctricas reversibles).
- Generación distribuida (principalmente minieólica y fotovoltaica).
- Biomasa y biocombustibles.
- Ahorro y eficiencia energética.

4.1 ALTERNATIVAS ANALIZADAS

En este estudio se ha analizado en una primera fase la situación actual del sistema eléctrico, tomando como referencia el año 2013 y en dos fases posteriores la situación prevista para el año 2020 y la previsible para el año 2038. En total se han simulado 40 sistemas de generación de energía eléctrica diferentes:

ENERGÍA 2013	Sistema de generación similar al actual, escogiendo como referencia el año 2013. <i>(1 Alternativa)</i>
ENERGÍA 2020	Sistema de generación previsto para el año 2020. <i>(1 Alternativa)</i>
ENERGÍA 2038	Sistema de generación previsto para el año 2038. (25 Alternativas)
ENERGÍA BATERÍA 2038	Sistema de generación previsto para el año 2038, integrando un sistema de almacenamiento energético (baterías o central hidroeléctrica reversible). <i>(7 Alternativas)</i>
ENERGÍA MOVILIDAD 2038	Sistema de generación previsto para el año 2038 incorporando la recarga de vehículos eléctricos. (3 Alternativas)
ENERGÍA 2038	Sistema de generación previsto para el año 2038 incorporando la gestión eficiente de la producción de agua desalada. (2 Alternativas)
ROULEDAD MOVILIDAD 2038	Sistema de generación previsto para el año 2038, incorporando un sistema de almacenamiento energético, la gestión eficiente de la producción de agua desalada y la recarga de vehículos eléctricos. (1 Alternativa)

Tabla 4.1. Alternativas de sistemas de generación de energía eléctrica analizadas Elaboración propia

Las simulaciones de cada uno de estos sistemas se han realizado empleando una aplicación informática denominada SOWES, desarrollada por 3iDS. SOWES es el primer software capaz de optimizar de forma conjunta los sistemas de **generación de energía eléctrica**, de **producción de agua** y de **carga de baterías de vehículos eléctricos**, en régimen aislado, con máxima penetración de energías renovables y mínimo coste de generación, realizando la optimización mediante un adecuado despacho de cargas en todo momento.

Entre las alternativas de generación planteadas se han evaluado:

- Las tecnologías de generación renovable (parques eólicos e instalaciones solares fotovoltaicas).
- Las actuales tecnologías de generación térmicas (Grupos diesel y Turbinas de Gas).
- Los sistemas de almacenamientos energéticos (baterías y central hidroeléctrica reversible).
- Las cargas gestionables dentro del sistema de generación de energía eléctrica (p. ej. la demanda de las plantas desaladoras).
- La introducción futura de los vehículos eléctricos.
- Diferentes tipos de combustibles (gasoil y fueloil).

Para desarrollar el estudio se han tenido en cuenta las siguientes *hipótesis de partida*:

- Existencia de un único agente (que representa al conjunto de operadores y productores).
- Espacio temporal de 25 años.
- Se emplearán sistemas de generación térmicos de alta eficiencia y elevada capacidad de respuesta, susceptibles de aceptar una elevada penetración de energías renovables. El índice de cobertura será superior a 1,1.
- Empleo de baterías o de una única central hidráulica reversible como sistema de almacenamiento energético.
- Para evaluar los costes de inversión y los costes fijos y variables de los diferentes equipos térmicos se han tomado como referencia precios de mercado y costes indicados en la *Orden IET* 1459/2014, de 1 de agosto, por la que se aprueban los parámetros retributivos y se establece el mecanismo de asignación del régimen retributivo específico para nuevas instalaciones eólicas y fotovoltaicas en los sistemas eléctricos de los territorios no peninsulares, en el *Decreto 6/2015*, 30 enero, por el que se aprueba el Reglamento que regula la instalación y explotación de los Parques Eólicos en Canarias y en el *Real Decreto 738/2015*, de 31 de julio, por el que se regula la actividad de producción de energía eléctrica y el procedimiento de despacho en los sistemas eléctricos de los territorios no peninsulares. El resto de costes de equipamiento e infraestructuras se ha estimado en base a precios de licitaciones públicas.
- La demanda prevista de energía eléctrica y agua de abasto en los próximos 25 años permanecerá constante (aunque también se han efectuado análisis de sensibilidad con incremento de la demanda de un 0,5% y un 1% anual).
- Tasa financiera: 7,5% para inversiones de parques eólicos e instalaciones fotovoltaicas y del 6,5% para grupos térmicos.
- No se consideran subvenciones ni préstamos y se han considerado precios de mercado conservadores.

RESULTADOS OBTENIDOS

5.1 RESULTADOS OBTENIDOS EN EL AÑO 2013

En el año 2013 el sistema de generación de energía eléctrica de la isla de Lanzarote poseía un parque térmico con una potencia neta total instalada de 187 MW, una planta de biometanización de 2 MW, 2 parques eólicos con una potencia total instalada de 8,8 MW e instalaciones fotovoltaicas repartidas por todo el territorio con una potencia total instalada de 7,7 MW, produciendo en conjunto 775 GWh de energía eléctrica puesta en red.

Parques eólicos

EQUIPOS DE GENERACIÓN EÓLICA (SIT. ACTUAL)							
Modelo	Parque eólico	Núm ae rog.	P. Unitaria (kW)	P. Total (kW)			
A-27	Montaña La Mina	5	225	1.125			
G-52	Los Valles	9	850	7.650			
TOTAL				8.775			

Instalaciones solares fotovoltaicas

EQUIPOS DE GENERACIÓN FOTOVOLTAICA (SIT. ACTUAL)				
Modelo	Potencia (kWp)			
Varios	7.729			

Sistemas de generación térmicos

EQUIPOS DE GENERACIÓN TÉRMICA (SIT. ACTUAL)									
				DATO	s técni	cos			
GRUPO TÉRMICO	MODELO	POTENCIA BRUTA (kW)	POTENCIA NETA (kW)	FECHA DE ENTRADA			TOS/CA	ARG A *	CONSUMO ESPECÍFICO NETO (gr/kWhe) CARGA 100%
GD 1				jun-86					**
GD 2 GD 3	14v40/45 - 4T	7.520	6.490	dic-86 oct-87	34%	33%	32%	30%	260
GD 4 GD 5	10 L67 GBES - 2 T	15.500	12.850	jul-89 may-89	42%	41%	40%	37%	209
GD 6	9 RTA76 - 2 T	24.000	20.510	sep-92	42%	41%	39%	35%	210
GD 7 GD 8	MAN B&W 18 V- 48/60 - 4 T	18.400	17.200	feb-02 ene-02	39%	39%	37%	32%	225
GD 9 GD 10	MAN B&W 18 V- 48/60 - 4 T	18.500	17.600	feb-06 mar-06	39%	39%	37%	32%	226
TG 1	Frame5 - GE	25.000	19.600	jun-88	23%	21%	19%	16%	365
TG 2	Frame6 - GE	37.500	32.340	ene-98	27%	25%	23%	19%	306

^(*) Se considera que en los G. Diesel no se emplea TCS, en cuyo caso el rendimiento global se incrementaría en un 4%.

4%. (**) Se incluyen pérdidas de autoconsumo. Las pérdidas derivadas del autoconsumo asociado a servicios auxiliares dentro de las centrales térmicas pueden disminuir el rendimiento global en un 3%

Figura 5.1. Características técnicas y ubicación de los principales equipos de generación de energía eléctrica de la isla de Lanzarote en el año 2013. Elaboración propia

De la energía eléctrica generada en el año 2013, el 4,5 % fue de origen renovable y el resto se obtuvo de grupos térmicos con un consumo estimado de combustible de 177.000 t y unas emisiones equivalentes de CO_2 de 636.000 t. Los costes de generación en ese año asociados a la inversión se estimaron en 1,74 c \in /kWh y los asociados a operación y mantenimiento (O&M) en 17,24 c \in /kWh, considerando que el precio del fueloil se encontraba a 572,3 \in /t y el del gasoil a 734,9 \in /t.

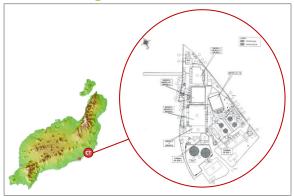
RESUMEN DE RESULTADOS DEL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA DE LANZAROTE
AÑO 2013 (real y simulado)

Año de simulación	Energía puesta en red (GWh)	Penetración energía renovable (%)	Costes de generación específicos (c€/kWh)	Costes de O&M (c€/kWh)	Consumo de combustible (t)	Emisiones equivalentes de CO ₂ a la atmósfera (t)
2013 real	775	4,5%			166.799	
2013 simulado	788	4,4%	18,98	17,24	177.227	636.245
%Desviación	2%	-2%			6%	

5.2 RESULTADOS OBTENIDOS EN EL AÑO 2020

En el año 2020 se estima la incorporación de 5 nuevos parques eólicos y nuevas instalaciones solares fotovoltaicas, alcanzando una potencia total instalada de 52,7 MW eólicos y 12,6 MW fotovoltaicos con un parque térmico similar al que existía en el año 2013 con una potencia total neta instalada de 185 MW y manteniendo la planta de biometanización de 2 MW.

EQUIPOS DE GENERACIÓN EÓLICA (SIT. PREVISTA 2020)							
Modelo	Parque eólico	Núm aerog.	P. Unitaria (kW)	P. Total (kW)			
G-52 (instalado)	Los Valles	9	850	7.650			
E-70	Punta Grande	2	2.300	4.600			
G-52 (ampliación)	Los Valles	1	850	850			
G-87	Punta los Vientos	6	2.000	12.000			
E-70	Teguise	4	2.300	9.200			
E-70	Arrecife	4	2.300	9.200			
E-70	San Bartolomé	4	2.300	9.200			
TOTAL				52.700			


EQUIPOS DE GENERACIÓN FOTOVOLTAICA (SIT. PREVISTA 2020)								
Modelo	Potencia Instalada (kWp)	Rendimiento Instalación	Año puesta en servicio					
SFV-Anterior2013	7.700,0	85%	2007					
SFV Balsa Maneje	1.912,0	85%	2018					
SFV Autoconsumo	3.000,0	85%	2018					
TOTAL	12.612,0							

Sistemas de generación térmicos

EQUIPOS DE GENERACIÓN TÉRMICA (SIT. PREVISTA 2020) - DATOS TÉCNICOS							
	POTENCI MODELO A NETA (MWe)	POTENCI	RENDIMIENTOS/CARGA *			GA *	CONSUMO ESPEC. NETO
GRUPO TÉRMICO						(gr/kWhe) CARGA 100%	
Diesel 7	MAN B&W	17,20	39%	39%	37%	32%	225
Diesel 8	MAN B&W	17,20	39%	39%	37%	32%	225
Diesel 9	MAN B&W	17,60	39%	39%	37%	32%	226
Diesel 10	MAN B&W	17,60	39%	39%	37%	32%	226
Diesel 11	MAN B&W	17,60	39%	39%	37%	32%	226
Diesel 4	MAN B&W	12,85	42%	41%	40%	37%	209
Diesel 5	MAN B&W	12,85	42%	41%	40%	37%	209
Diesel 6	Sulzer	20,51	42%	41%	39%	35%	210
Gas 2	GE	32,34	27%	25%	23%	19%	306
Gas 1	GE	19,60	23%	21%	19%	16%	365
Biogás (Zonzamas)	-	2,00	-	-	-	-	-
(*) Rendimientos a efe	ctos retributivos	s					

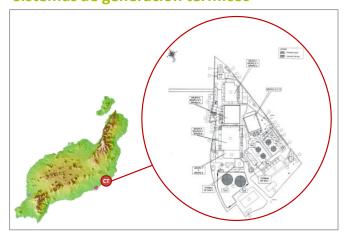
Figura 5.2. Estimación de las características técnicas y ubicación de los principales equipos de generación de energía eléctrica de la isla de Lanzarote en el año 2020. Elaboración propia

Los resultados obtenidos tras efectuar la simulación en este año muestran que la penetración de energías renovables se incrementará hasta alcanzar el 21%, se consumirán aproximadamente 146.800 toneladas de combustible y se emitirán a la atmósfera un total de 527.000 toneladas de CO₂, experimentando una reducción en consumo de combustible y en emisiones de un 17% respecto al año 2013. Los costes de generación en el año 2020 asociados a la inversión se estiman en 2,4 c€/kWh y los asociados a O&M en 16,29 c€/kWh, considerando que el precio del fueloil fuese de 633,91 €/t y el del gasoil de 783,53 €/t.

RESUMEN DE RESULTADOS DEL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA DE LANZAROTE AÑO 2020 (PREVISIÓN)								
Año de simulación	Energía puesta en red (GWh)	Penetración energía renovable (%)	Costes de generación específicos (c€/kWh)	Costes de O&M (c€/kWh)	Consumo de combustible (t)	Emisiones equivalentes de CO_2 a la atmósfera (t)		
2020	788	20,87%	18,64	16,29	146.775	526.925		

5.3 RESULTADOS OBTENIDOS EN EL AÑO 2038

En el año 2038 se ha analizado hacia donde debe tender el sistema de generación eléctrico para conseguir la máxima penetración de energía renovable al mínimo coste de generación, analizando diferentes alternativas en las que se incluyen la renovación de los grupos térmicos de la central térmica existente, la planta de biometanización de Zonzamas de 2MW de potencia y la incorporación de nuevos parques eólicos e instalaciones solares fotovoltaicas hasta alcanzar una potencia máxima de 201MW y 27MW respectivamente.



EQUIP	OS DE GENERACIÓN EÓLIC	CA (SIT. PR	EVISTA 2038)	
Modelo	Parque eólico	Núm aerog.	P. Unitaria (kW)	P. Total (kW)
E-70	Punta Grande	2	2.300	4.600
G-52 (ampliac.)	Los Valles _ampliac.	1	850	850
G-87	Punta los Vientos	6	2.000	12.000
E-70	Teguise	4	2.300	9.200
E-70	Arrecife	4	2.300	9.200
E-70	San Bartolomé	4	2.300	9.200
V-117 (actualiz.)	Montaña La Mina (act.)	3	3.300	9.900
V-117	Varios autoconsumo	15	3.300	49.500
Haliade 150	Offshore I	2	6.000	12.000
Haliade 150	Offshore II	4	6.000	24.000
Haliade 150	Offshore III	8	6.000	48.000
V-117 (repotenc.)	Los Valles_repotenc.	4	3.300	13.200
TOTAL				201.650

EQUIPOS DE GENERACIÓN FOTOVOLTAICA (SIT. PREVISTA 2038)						
Modelo	Potencia Instalada (kWp)					
SFV Balsa Maneje	1.900					
SFV Autoconsumo	1.000					
SFV-2025 Generación distribuida	2.000-4.000					
SFV-2030 Generación distribuida	2.000-4.000					
SFV-2035 Generación distribuida	2.000-4.000					
SFV-2025 Gran instalación	1.000-4.000					
SFV-2030 Gran instalación	1.000-4.000					
SFV-2035 Gran instalación	1.000-4.000					
TOTAL	11.900 -26.900					

Sistemas de generación térmicos

EQUIPOS DE GENERACIÓN TÉRMICA (SIT. PREVISTA 2038) - DATOS TÉCNICOS									
GRUPO TÉRMICO	POTENCIA	RENDIN	/IENTC	GA *	CONSUMO ESPEC. NETO				
	NETA (MWe)					(gr/kWhe) CARGA 100%			
Diesel 11	17,60	39%	39%	37%	32%	226			
Diesel 12	17,60	39%	39%	37%	32%	226			
Diesel 13	17,60	39%	39%	37%	32%	226			
Diesel 14	17,60	39%	39%	37%	32%	226			
Diesel 15	17,60	39%	39%	37%	32%	226			
Diesel 16	17,60	39%	39%	37%	32%	226			
Diesel 17	17,60	39%	39%	37%	32%	226			
Diesel 18	17,60	39%	39%	37%	32%	226			
Diesel 19	17,60	39%	39%	37%	32%	226			
Biogás (Zonzamas)	2,00	-	-	-	-	-			
(*) Rendimientos a efectos retributivos									

Figura 5.3. Estimación de las características técnicas y ubicación de los principales equipos de generación de energía eléctrica de la isla de Lanzarote en el año 2038. Elaboración propia

5.3.1 SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA ÓPTIMO SIN ALMACENAMIENTO ENERGÉTICO

Si se continuara con un sistema eléctrico similar al actual, sin incorporar cargas gestionables y/o sistemas de almacenamiento energético, el sistema eléctrico óptimo a nivel económico sería el compuesto por una central térmica de 158 MW (con 9 grupos térmicos de 17,6 MW de potencia neta que consumen fueloil), un mínimo de 10 parques eólicos con una potencia total instalada de 153,65 MW, varias instalaciones fotovoltaicas con una potencia total instalada de 11,90 MW y la planta de biometanización de Zonzamas de 2 MW de potencia, alcanzando una penetración de renovables del 50% y un ahorro de combustibles y emisiones de CO₂ respecto al año 2013 de un 44%. A la alternativa óptima económica se le ha denominado con la nomenclatura LZ-2038_ 160MWter + 153MWeol + 12MWfv.

Los costes de generación en el año 2038 asociados a la inversión se estiman en 5,22 c€/kWh y los asociados a O&M en 13,52 c€/kWh, considerando que el precio del fueloil fuese de 633,91 €/t. La incorporación de nuevas instalaciones renovables a partir de la potencia indicada anteriormente incrementarían los costes de generación dado que comenzarían a tener que desconectarse algunas de ellas debido a que se debe disponer de grupos térmicos de respaldo que garanticen la estabilidad del sistema frente a disminuciones instantáneas de producción de las mismas, estimando que la máxima penetración renovable que se podría alcanzar sería de un 56%.

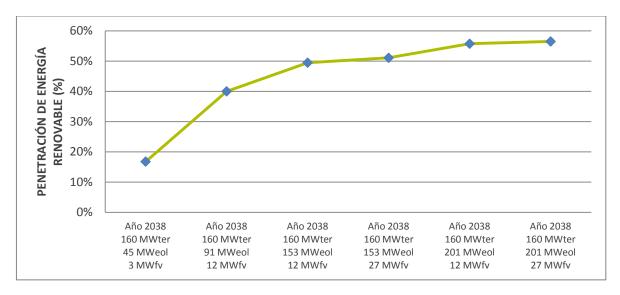


Figura 5.4. Penetración de la energía renovable con diferentes alternativas de generación de energía eléctrica en el año 2038 en las que se van incorporando nuevos parques eólicos e instalaciones fotovoltaicas. Elaboración propia

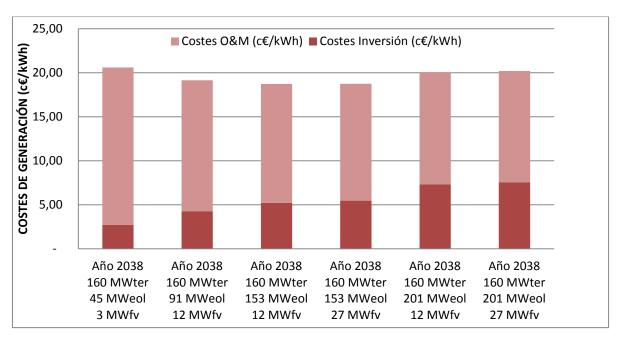


Figura 5.5. Costes de generación de energía eléctrica de diferentes alternativas de generación en el año 2038 en las que se van incorporando nuevos parques eólicos e instalaciones fotovoltaicas. Elaboración propia

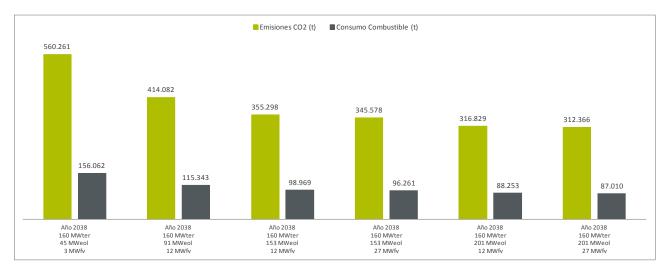


Figura 5.6. Consumo de combustible y emisiones equivalentes de CO₂ de diferentes alternativas de generación de energía eléctrica en las que se van incorporando nuevos parques eólicos e instalaciones fotovoltaicas.

Elaboración propia

RESUMEN DE RESULTADOS DEL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA DE LANZAROTE AÑO 2038 (PREVISIÓN SIN ALMACENAMIENTO ENERGÉTICO)

	ANO 2000 (I REVISION SIN ALMACENAMILIATO ENERGETICO)						
Año de simulación	Alternativa	Energía puesta en red (GWh)	Penetración energía renovable (%)	Costes de generación específicos (c€/kWh)	Costes de O&M (c€/kWh)	Consumo de combustible (t)	Emisiones equivalentes de CO ₂ a la atmósfera (t)
2038	160 MWter 45 MWeol 3 MWfv	788	16,78%	20,61	17,90	156.062	560.261
2038	160 MWter 91 MWeol 12 MWfv	788	39,99%	19,14	14,86	115.343	414.082
2038	160 MWter 153 MWeol 12 MWfv	788	49,47%	18,74	13,52	98.969	355.298
2038	160 MWter 153 MWeol 27 MWfv	788	51,07%	18,74	13,26	96.261	345.578
2038	160 MWter 201 MWeol 12 MWfv	788	55,73%	20,07	12,76	88.253	316.829
2038	160 MWter 201 MWeol 27 MWfv	788	56,48%	20,19	12,63	87.010	312.366

La inversión requerida a partir del año 2020 para la instalación de los diferentes equipos de generación oscila entre los 124 y los 565 millones de euros en función de la alternativa analizada, tal como se indica en la siguiente tabla.

Alternativa	Inversión Parques Eólicos (€)	Inversión Instalaciones Fotovoltaicas (€)	Inversión Grupos Térmicos (€)	Inversión Total (€)
160 MWter 45 MWeol 3 MWfv	-	-	124.000.000	124.000.000
160 MWter 91 MWeol 12 MWfv	121.309.980	16.800.000	124.000.000	262.109.980
160 MWter 153 MWeol 12 MWfv	221.089.980	16.800.000	124.000.000	361.889.980
160 MWter 153 MWeol 27 MWfv	221.089.980	39.600.000	124.000.000	384.689.980
160 MWter 201 MWeol 12 MWfv	401.685.960	16.800.000	124.000.000	542.485.960
160 MWter 201 MWeol 27 MWfv	401.685.960	39.600.000	124.000.000	565.285.960

Figura 5.7. Estimación de la inversión requerida partir del año 2020 según alternativa de sistema de generación de energía eléctrica en el año 2038. Elaboración propia

5.3.2 SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA ÓPTIMO CON ALMACENAMIENTO ENERGÉTICO

De las alternativas analizadas se considera que la alternativa óptima a nivel económico al igual que en el apartado anterior continúa siendo la LZ-2038_ 160MWter + 153MWeol + 12MWfv incorporando un conjunto de baterías industriales de ión-litio con una potencia total instalada entre 40 y 60 MW (precio del fueloil a 633,91 €/t) ya que ofrece los menores costes de generación, en torno a los 20 c€/kWh, y reduce al máximo los excedentes renovables, permitiendo alcanzar una penetración de energía renovable del 60%, es decir un 10% más respecto a la alternativa sin el empleo de baterías.

Desde el punto de vista medioambiental así como de autosuficiencia energética, la alternativa que ofrece el mejor resultado es la que se ha denominado con la nomenclatura LZ-2038_ 160MWter + 201MWeol + 27MWfv incorporando un conjunto de baterías con una potencia total instalada entre 40 y 100 MWbat (precio del fueloil a 633,91 €/t), que genera unos costes de generación entre 20,37 y 22,13 c€/kWh, una penetración de energía renovable entre el 70% y el 79% y un ahorro en consumo de combustible y emisiones de gases de efecto invernadero entre un 67% y un 77% con respecto al sistema de generación en el año 2013.

Los costes de generación asociados a la inversión se incrementarían en los primeros años de puesta en funcionamiento de las baterías. Si se considera el empleo de 60 MW de baterías, se requeriría de una inversión asociada a las mismas de 240 millones de euros (aunque se estima que en menos de 10 años su precio disminuya y su influencia sea menos acusada) y los costes de generación asociados a la inversión serían de 10,53 c€/kWh. A medida que esta inversión se fuera amortizando los costes de generación irían disminuyendo y acercándose a los costes de operación y mantenimiento estimados en 10,28 c€/kWh, un 40% inferior respecto al año 2013, considerando que el precio del fueloil fuese de 633,91 €/t.

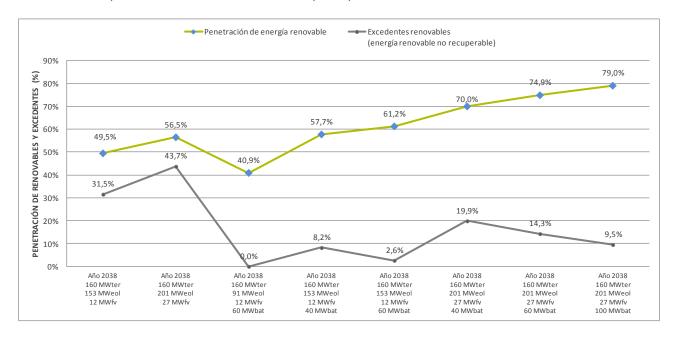


Figura 5.8. Penetración de la energía renovable y excedentes con diferentes alternativas de generación de energía eléctrica en el año 2038 en las que se van incorporando nuevos parques eólicos, instalaciones fotovoltaicas y baterías.

Elaboración propia

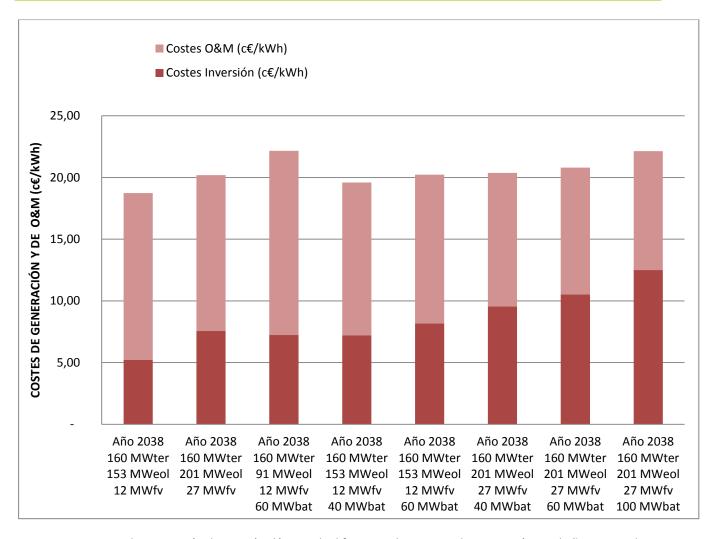


Figura 5.9. Costes de generación de energía eléctrica de diferentes alternativas de generación en el año 2038 en las que se van incorporando nuevos parques eólicos, instalaciones fotovoltaicas y baterías. Elaboración propia

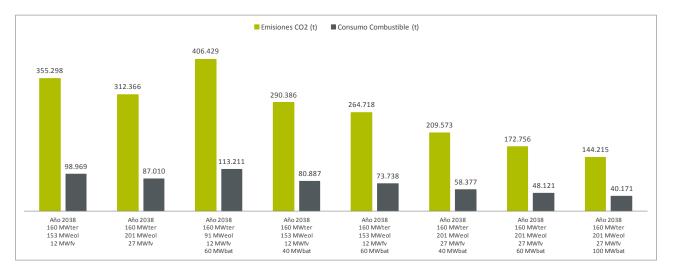


Figura 5.10. Consumo de combustible y emisiones equivalentes de ${\rm CO_2}$ de diferentes alternativas de generación de energía eléctrica en las que se van incorporando nuevos parques eólicos, instalaciones fotovoltaicas y baterías. Elaboración propia

RESUMEN DE RESULTADOS DEL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA DE LANZAROTE AÑO 2038 (PREVISIÓN CON ALMACENAMIENTO ENERGÉTICO)

Año de simulación	Alternativa	Energía puesta en red (GWh)	Penetración energía renovable (%)	Costes de generación específicos (c€/kWh)	Costes de O&M (c€/kWh)	Consumo de combustible (t)	Emisiones equivalentes de CO2 a la atmósfera (t)
2038	160 MWter 91 MWeol 12 MWfv 60 MWbat	788	40,90%	22,16	14,92	113.211	406.429
2038	160 MWter 153 MWeol 12 MWfv 40 MWbat	788	57,73%	19,60	12,41	80.887	290.386
2038	160 MWter 153 MWeol 12 MWfv 60 MWbat	788	61,23%	20,23	12,05	73.738	264.718
2038	160 MWter 201 MWeol 27 MWfv 40 MWbat	788	69,98%	20,37	10,83	58.377	209.573
2038	160 MWter 201 MWeol 27 MWfv 60 MWbat	788	74,86%	20,80	10,28	48.121	172.756
2038	160 MWter 201 MWeol 27 MWfv 100 MWbat	788	79,03%	22,13	9,63	40.171	144.215

La inversión requerida a partir del año 2020 para la instalación de los diferentes equipos de generación, incluyendo las baterías, oscila entre los 502 y los 965 millones de euros en función de la alternativa analizada, tal como se indica en la siguiente tabla.

Alternativa		Inversión Parques Eólicos (€)	Inversión Instalaciones Fotovoltaicas (€)	Inversión Grupos Térmicos (€)	Inversión Batería (€)	Inversión Total (€)
160 MWter 91 MWeol	12 MWfv 60 MWbat	121.309.980	16.800.000	124.000.000	240.000.000	502.109.980
160 MWter 153 MWeol	12 MWfv 40 MWbat	221.089.980	16.800.000	124.000.000	160.000.000	521.889.980
160 MWter 153 MWeol	12 MWfv 60 MWbat	221.089.980	16.800.000	124.000.000	240.000.000	601.889.980
160 MWter 201 MWeol	27 MWfv 40 MWbat	401.685.960	39.600.000	124.000.000	160.000.000	725.285.960
160 MWter 201 MWeol	27 MWfv 60 MWbat	401.685.960	39.600.000	124.000.000	240.000.000	805.285.960
160 MWter 201 MWeol	27 MWfv 100 MWbat	401.685.960	39.600.000	124.000.000	400.000.000	965.285.960

Figura 5.11. Estimación de la inversión requerida partir del año 2020 según alternativa de sistema de generación de energía eléctrica en el año 2038. Elaboración propia

El empleo de una central hidroeléctrica reversible de agua de mar, que previsiblemente podría instalarse en el Risco de Famara (aunque actualmente no existen estudios que garanticen su viabilidad), considerando que contiene grupos de bombeo y grupos de turbinado con una potencia total instalada de 60 MW (mediante combinaciones de 6 grupos unitarios de 10 MW), una balsa de 1 hm³ ubicada sobre el risco y un salto útil de 400 m, permitiría incrementar la penetración de energía renovable de un 56,5% a un 67% dentro de la alternativa óptima renovable LZ-2038_ 160MWter + 201MWeol + 27MWfv tal como se muestra en la siguiente tabla, consiguiendo un ahorro de un 23% en consumo de combustibles y emisiones equivalentes de CO₂ a la atmósfera. Sin embargo la elevada inversión requerida para su implantación, estimada en 200 millones de euros incrementaría los costes de generación en un 7,8%.

Si se compara con el uso de baterías, se observa que el empleo de éste último ofrece mejores resultados que el empleo de la central aunque la inversión sea mayor a igual potencia instalada (estimada en 240 millones de euros para 60 MW), tanto en penetración de renovables (75% frente a 67%), como en costes de generación (20,80 c€/kWh frente a 21,70 c€/kWh) así como en ahorro de consumo de combustibles y emisiones de CO₂ equivalentes.

Alternativa analizada	Penetración de renovables (%)	Costes de Generación (c€/kWh)	Costes de O&M (c€/kWh)	Consumo Combustible (t)	Emisiones CO2 (t)	Coste Generación (€/año)
Con CHR - 60 MW	67,0%	21,75	12,06	67.446	242.130	171.639.530
Con Baterías - 60MW	74,9%	20,80	10,28	48.121	172.756	164.077.857
Sin Baterías	56,5%	20,19	12,63	87.010	312.366	159.264.083

Figura 5.12. Comparativa del empleo de diferentes sistemas de almacenamiento energético para la alternativa de generación LZ2038-160 MWter-201 MWeol-27 MWfv . Elaboración propia

5.3.3 INFLUENCIA DE UNA GESTIÓN EFICIENTE DE LA PRODUCCIÓN DE AGUA DESALADA EN EL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA

La introducción de cargas gestionables asociadas la producción de agua desalada, en la que se establece una condiciones de interrumpibilidad de algunos bastidores de las plantas desaladoras de la isla para producir agua con energía 100% renovable disponiendo de 14 MW de potencia gestionable, permitiría incrementar la penetración de renovables como mínimo en un 1%, reduciendo los costes de generación en 0,10 c€/kWh, generando un ahorro en torno a los 700.000 euros al año (considerando que el precio del fueloil fuese de 633,91 €/t).

RESUMEN DE RESULTADOS DEL S	SISTEMA DE GENERACIÓN DE ENERG	ÍA ELÉCTRICA DE LANZAROTE
AÑO 2038 (INFLUENCIA DE LA	A GESTIÓN EFICIENTE DE LA PRODUC	CIÓN DE AGUA DESALADA)

Año de	Alternativa	Energía	Penetración	Costes de	Costes de	Consumo de	Emisiones
simulación		puesta en red (GWh)	energía renovable (%)	generación específicos (c€/kWh)	O&M (c€/kWh)	combustible (t)	equivalentes de CO ₂ a la atmósfera (t)
2038	160 MWter 153 MWeol 12 MWfv (Con gestión eficiente agua)	788	50,42%	18,64	13,42	96.711	347.192
2038	160 MWter 153 MWeol 12 MWfv (Sin gestión eficiente agua)	788	49,47%	18,74	13,52	98.969	355.298
2038	160 MWter 201 MWeol 12 MWfv (Con gestión eficiente agua)	788	57,66%	20,10	12,54	84.216	302.336
2038	160 MWter 201 MWeol 27 MWfv (Sin gestión eficiente agua)	788	56,48%	20,19	12,63	87.010	312.366

5.3.4 INFLUENCIA DE LA RECARGA DE VEHÍCULOS ELÉCTRICOS EN EL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA

La incorporación de una flota de vehículos eléctricos en un sistema de alta penetración de renovables sin incorporar sistema de almacenamiento energético, sustituyendo 40.000 vehículos térmicos por eléctricos (el 50% del parque móvil actual de turismos), permitiría generar un ahorro en consumo de combustibles asociados a automoción del 36%, pasando de consumir 77.760 t a 49.862 t, representando un ahorro económico anual de 20 millones de euros (considerando un precio del combustible de automoción de 800 €/t), reduciendo los costes de desplazamiento de 8€-100km con vehículo térmico a 2€-100km con vehículo eléctrico.

Alternativa óptima medioambiental		Penetración renovable (%)	Coste de Generación Específico (c€/kWh)	Consumo Combustible en Generación (t)	Emisiones CO2 en Generación (t)	Coste de Generación (€)	Demanda de energía eléctrica (MWh)	Coste Generación + Movilidad (€)	Consumo Combustible Generación + Movilidad (t)
Año 2038 160 MWter 201 MWeol 27 MWfv	Sin Vehículo Eléctrico	56,5%	20,19	87.010	312.366	159.264.083	788.676	190.368.083	125.890
Año 2038 160 MWter 201 MWeol 27 MWfv	Con Vehículo Eléctrico	55,9%	19,31	97.992	351.792	170.600.293	883.413	170.600.293	97.992

Número de vehículos eléctricos	40.000
Incremento de demanda de energía eléctrica	12%
Variación penetración renovable	-0,5%
Ahorro en consumo combustible y emisiones GEI (%)	22,2%
Ahorro económico anual	19.767.790€

Figura 5.13. Comparativa del sistema eléctrico óptimo a nivel medioambiental del año 2038 y el mismo modelo añadiendo la recarga de baterías de 40.000 vehículos eléctricos Elaboración propia

5.3.5 SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA ÓPTIMO CON ALMACENAMIENTO ENERGÉTICO, GESTIÓN EFICIENTE DE LA PRODUCCIÓN DE AGUA Y RECARGA DE VEHÍCULOS ELÉCTRICOS

Por último, la alternativa con la que se consiguen los mejores resultados, tal como se aprecia en la siguiente tabla, es aquella que combina los anteriores supuestos, incorporando sistema de almacenamiento energético, cargas gestionables asociadas a la producción de agua y la recarga de vehículos eléctricos, todos de forma simultánea. El consumo de combustible asociado a la producción de electricidad y a la movilidad de 40.000 vehículos se reduciría en un 53%, pasando de 125.890 t en el modelo de gestión similar al actual a 58.732 t en el modelo óptimo.

Alternativa óptima medioambiental	Gestión	Penetración renovable (%)	Costes de Generación específico (c€/kWh)	Consumo Combustible en Generación (t)	Emisiones CO2 en Generación (t)	Coste de Generación (€)	Demanda de energía eléctrica (MWh)	Coste Generación + Movilidad (€)	Consumo Combustible Generación + Movilidad (t)	Emisiones CO2 Generación + Movilidad (t)
Año 2038 160 MWter 201 MWeol 27 MWfv	Sin Vehículo Eléctrico y Sin Gestión de Agua	56,5%	20,19	87.010	312.366	159.264.083	788.676	190.368.083	125.890	450.001
Año 2038 160 MWter 201 MWeol 27 MWfv	Sin Vehículo Eléctrico y Con Gestión de Agua	57,7%	20,10	84.216	302.336	158.567.555	788.830	189.671.555	123.096	439.971
Año 2038 160 MWter 201 MWeol 27 MWfv	Con Vehículo Eléctrico y Sin Gestión Agua	55,9%	19,31	97.992	351.792	170.600.293	883.413	170.600.293	97.992	351.792
Año 2038 160 MWter 201 MWeol 27 MWfv 60 Mwbat	Baterias, Sin Vehículo Eléctrico Ni Gestión de Agua	74,9%	20,80	48.121	172.756	164.077.857	788.677	195.181.857	87.001	310.391
Año 2038 160 MWter 201 MWeol 27 MWfv	Baterías, Con Vehículo Eléctrico y Gestión de Agua	72,4%	19,69	58.732	210.846	173.949.817	883.568	173.949.817	58.732	210.846

Número de vehículos eléctricos	40.000
Potencia gestionable asociada a desalación (MW)	14
Potencia almacenamiento energético en baterías (MW)	60
Incremento de demanda de energía eléctrica	12%
Variación penetración renovable	16%
Ahorro en consumo combustible y emisiones GEI (%)	53%
Ahorro económico anual (€)	16.418.266 €

Figura 5.14. Comparativa del sistema eléctrico óptimo a nivel medioambiental en el año 2038 con diferentes modelos de gestión. Elaboración propia

5.3.6 INFLUENCIA DE LA VARIACIÓN DEL PRECIO DEL COMBUSTIBLE EN EL SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA

En las alternativas analizadas se ha considerado que el precio del fueloil consumido en la central térmica es de 633,91 €/t, considerado como el precio máximo que se estima que se alcanzaría en el año 2038, equivalente al precio máximo alcanzado en los últimos cinco años cuando el precio del barril del petróleo se encontraba a 100\$/barril. En el caso de que el precio fuese un 47% inferior, con un valor de 332,67€/t, equivalente al precio mínimo alcanzado en los últimos cinco años cuando el precio del barril del petróleo se encontraba a 60\$/barril, los costes de generación disminuirían sustancialmente.

En la alternativa LZ_2038_ 152MWeol + 12MWfv, considerada la óptima económica sin el empleo de baterías, los costes de generación disminuirían un 20% pasando de 18,74 c€/kWh a 14,98 c€/kWh.

Por otro lado se observa que cuando el precio del combustible es bajo, los costes de generación permanecen prácticamente constantes, en torno a los 15 c€/kWh, hasta alcanzar una penetración de renovables del 50%, incrementándose en un 2% de la alternativa LZ_2038_ 45MWeol + 3MWfv (con un 16% de penetración de renovables) a la alternativa LZ_2038_ 152MWeol + 12MWfv (con un 49% de penetración de renovables). Sin embargo cuando el precio de combustible es elevado, el disponer de un sistema con baja penetración de energía renovable puede incrementar los costes de generación en un 10% pasando de 18,74 c€/kWh en la alternativa LZ_2038_ 152MWeol + 12MWfv (con un 49% de penetración de renovables) a 20,61 c€/kWh en la alternativa LZ_2038_ 45MWeol + 3MWfv (con un 16% de penetración de renovables).

Por tanto en el sistema de energía eléctrica óptimo LZ_2038_ 152MWeol + 12MWfv con alta penetración de energía renovable, en torno al 50%, los costes de generación se ven en menor medida influenciados por variaciones sustanciales en el precio del combustible.

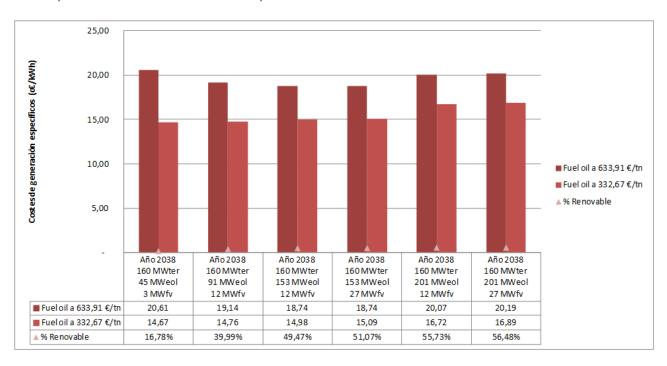


Figura 5.15. Costes de generación de energía eléctrica de diferentes alternativas de generación en el año 2038 en las que se van incorporando nuevos parques eólicos e instalaciones fotovoltaicas y variando el precio del combustible.

Elaboración propia

6 CONCLUSIONES

El modelo energético actual de la Isla de Lanzarote es insostenible, con una dependencia absoluta de los combustibles fósiles, que ha provocado que los costes de generación de electricidad, de producción de agua y de transporte interior se hayan incrementado sustancialmente en la última década y se disponga de un bajo nivel de autosuficiencia energética.

En este estudio se ha demostrado que para conseguir los mejores resultados técnicos, económicos y medioambientales en el sistema de generación de energía eléctrica de la isla de Lanzarote se debe incrementar sustancialmente en los próximos años la potencia eólica y solar fotovoltaica, introducir sistemas de almacenamiento energético, cargas gestionables y vehículos eléctricos.

En el año 2013, el sistema de generación de energía eléctrica de la isla de Lanzarote poseía 2 parques eólicos, instalaciones fotovoltaicas repartidas por todo el territorio y una planta de biometanización que generaban en conjunto el 4,5% de la energía eléctrica demandada. El resto era generado por grupos térmicos consumiendo 166.799 t de combustibles fósiles y emitiendo 598.808 t de CO₂ equivalente a la atmósfera.

En el año 2020 se prevé que con la incorporación de 5 nuevos parques eólicos y nuevas instalaciones solares fotovoltaicas se alcance una penetración de energía renovable del 20,8%, reduciendo el consumo de combustible y las emisiones en un 12% respecto al año 2013.

Figura 6.1. Comparativa de los resultados de simulación de los sistemas de energía eléctrica en los años 2013, 2020 y 2038. Elaboración propia

En el año 2038 se estima que si se continuara con un sistema eléctrico similar al actual, sin incorporar cargas gestionables y/o sistemas de almacenamiento energético, el sistema eléctrico óptimo a nivel económico sería el compuesto por una central térmica de 158 MW (con 9 grupos térmicos de 17,6 MW de potencia neta que consumen fueloil), un mínimo de 10 parques eólicos con una potencia total instalada de 153,65 MW, varias instalaciones fotovoltaicas con una potencia total instalada de 11,90 MW y la planta de biometanización de Zonzamas de 2 MW de potencia, alcanzando una penetración de renovables del 50% y un ahorro de combustibles y emisiones de CO₂ respecto al año 2013 de un 40%.

Por último si se incorporaran sistemas de almacenamiento energético al sistema eléctrico y cargas gestionables, la alternativa más favorable estaría compuesta por 9 grupos diesel de 17,6 MW con una potencia neta total instalada de 158 MW, más de 11 parques eólicos con una potencia total instalada de 201 MW, instalaciones fotovoltaicas repartidas por todo el territorio con una potencia total instalada de 27 MW, la planta de biometanización de Zonzamas con 2 MW de potencia, 60 MW de baterías como sistema de almacenamiento energético, 14 MW de potencia gestionable asociada a las plantas desaladoras de la isla y la sustitución de 40.000 vehículos térmicos por eléctricos, obteniéndose los siguientes resultados:

- Una alta penetración de energía renovable en la generación de energía eléctrica: 72% frente al 4,5% del año 2013.
- Un consumo de combustible para uso interno de 118.780 tep/año, un 53,4% menos que en el año 2013.
- Unas emisiones de CO₂ de 533.692 t/año, un 38% menos que en el año 2013.
- Un consumo de combustible para producción de electricidad de 58.731 tep/año, un 65% menos que en el año 2013.
- Un ahorro económico de 93 millones de euros al año en consumo de combustible, considerando un precio medio del combustible de 682 €/tep.
- Un nivel de autosuficiencia energética del 54% frente al 3,2% actual.

A continuación se presenta el balance de energía de uso interno de la isla de Lanzarote previsto para el año 2038 si se llevaran a cabo estas actuaciones, frente al balance de energía de uso interno actual.

BALANCE ENERGÍA ACTUAL USO INTERNO – AÑO 2013

MODELO ENERGÉTICO GLOBAL INSOSTENIBLE

Baja penetración de renovable en generación energía eléctrica: 4,5%

Elevado consumo combustible: 254.900 Tep/año

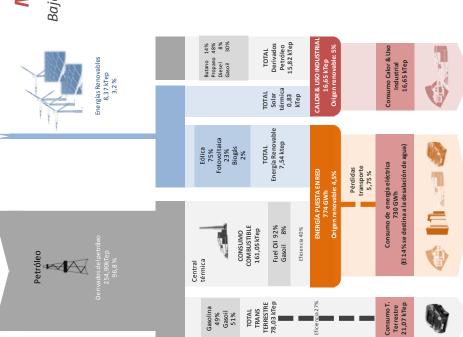
Coste aprox. del combustible: 174 millones de euros al año

Altas emisiones de GEI: 873.500 t/año

Bajo nivel de autosuficiencia energética: 3,2%

Generación de energía eléctrica (4,5% renovable):

Producción: 774 GWh/añoConsumo combustible: 161.050 Tep


14 % destinado a desalación y a impulsión de agua

Movilidad Terrestre (0% renovable):

109.576 Vehículos

Consumo combustible: 78.030 Tep

Generación de Calor (5% renovable): ■ Consumo combustible: 16.650 Tep

BALANCE ENERGÍA FUTURO USO INTERNO – AÑO 2038

MODELO ENERGÉTICO GLOBAL SOSTENIBLE

Alta penetración de renovable en generación energía eléctrica: 72%

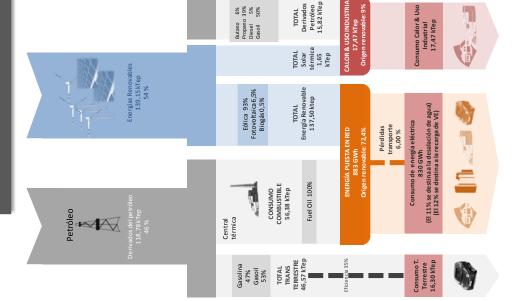
Consumo combustible: 118.780 Tep/año

Coste aprox. del combustible: **81 millones de euros al año** Emisiones de GEI: **407.051 t/año** Alto nivel de autosuficiencia energética: **54%**

Generación de energía eléctrica (72% renovable):

- Producción: 883 GWh/añoConsumo combustible: 56.380 Tep
- 11% destinado a desalación y a impulsión de agua
- 11 % destinado a recarga de 40.000 vehículos eléctricos

Movilidad Terrestre (22% renovable):


- 118.165 Vehículos (33% eléctricos)
- Consumo combustible: 46.570 Tep

Generación de Calor (9% renovable):

Consumo combustible: 15.820 Tep

C.I.F. :B-76.008.705 Edificio polivalente II. 1º Planta, Módulos 57-58 Parque Científico Tecnológico, Campus de Tafira de la ULPGC CP 35017, Las Palmas de Gran Canaria.

Teléfonos: 928.45.99.28 y 928.45.99.29 Fax: 928.45.70.88